人工智能在各行业的迅速落地,使很多任务的完成成本大幅降低,效率显著提升。与此同时,作为其技术内核,机器学习和深度学习算法也越来越受到人们的关注,越来越多的行业的从业者都希望了解和学习机器学习与深度学习算法的相关原理,并希望将其与自己的领域相结合,拓展新思路,形成新的解决方案。
本课程主要面向以机器学习与深度学习为专业方向的学员,以及想要了解和学习机器学习与深度学习算法的各行业从业者,以较为通俗讲解机器学习与深度学习算法,辅以日常生活中的例子和编程实验,涉及机器学习领域中比较常见的经典模型,以及新兴的三大类算法,包括:
常用于影像数据进行分析处理的卷积神经网络(简称CNN)
文本分析或自然语言处理的递归神经网络(简称RNN)
常用于数据生成或非监督式学习应用的生成对抗网络(简称GAN)
熟悉Python基础语法;
熟悉Anaconda环境配置与基本操作;
掌握Matplotlib可视化技术;
掌握Numpy技术基础;
掌握深度学习技术基础;
掌握Tensorflow框架的基本操作;
掌握PyTorch框架的基本操作;
熟悉CNN技术原理与编程要点;
熟悉RNN技术原理与编程要点;
熟悉GAN技术原理与编程要点。
具备一定的Python和软件开发基础,希望深入了解机器学习和深度学习底层原理、数学原理、以及卷积神经网络、循环神经网络等实用化编程技术的广大工程技术人员。