中培教育IT资讯频道
您现在的位置:首页 > IT资讯 > 数据库 > 【专家视点】浅论SQL Server 和 Oracle 及 MySQL 三大数据库的区别

【专家视点】浅论SQL Server 和 Oracle 及 MySQL 三大数据库的区别

2016-07-08 15:18:09 | 来源:中培企业IT培训网

目前SQL Server 和 Oracle 及 MySQL是互联网领域当中最常用的三大数据库。那么这三大数据库之间到底有哪些区别呢?中培教育《SQL Server2012数据库管理与性能调优》培训专家姜老师进行了详细介绍。

姜老师表示,三者是目前市场占有率最高的关系数据库,而且很有代表性。

从历史来看, Oracle成立于1977年,由于其诞生早、结构严谨、高可用、高性能等特点,使其在传统数据库应用中大杀四方,金融、通信、能源、运输、零售、制造等各个行业的大型公司基本都是用了Oracle,早些年的时候,世界500强几乎100%都是Oracle的用户。

MySQL的最初的核心思想,主要是开源、简便易用。其开发可追溯至1985年,而第一个内部发行版本诞生,已经是1995年。到1998年,MySQL已经可以支持10中操作系统了,其中就包括win平台。

由于MySQL的早期定位,其主要应用场景就是互联网开发。基本上,互联网的爆发成就了MySQL,LAMP架构风靡天下。而由于MySQL更多的的追求轻量、易用,以及早期的事物操作及复杂查询优化的缺失,在传统的数据库应用场景中,份额极少。

一提到SQL Server,大家一般都只想到Microsoft SQL Server,而非Sybase SQL Server。SQL Server最初是由Microsoft, Sybase and Ashton-Tate三家公司拦下的生意,是为IBM(又出现了)公司的OS/2操作系统开发的。随着OS/2项目的失败,大家也分道扬镳。 Microsoft自然转向自己的win操作系统,作为windows NT软件方案的一部分。而Sybase则专注于Linux/Unix方向的数据库开发。

MS SQL Server主要面向中小企业。其最大的优势就是在于集成了MS公司的各类产品及资源,提供了强大的可视化界面、高度集成的管理开发工具,在快速构建商业智能(BI)方面颇有建树。 MS SQL Server是MS公司在软件集成方案中的重要一环,也为WIN系统在企业级应用中的普及做出了很大贡献。

在应用场景方面,Oracle。Oracle的应用,主要在传统行业的数据化业务中,比如:银行、金融这样的对可用性、健壮性、安全性、实时性要求极高的业务;零售、物流这样对海量数据存储分析要求很高的业务。此外,高新制造业如芯片厂也基本都离不开Oracle;电商也有很多使用者,如京东(正在投奔Oracle)、阿里巴巴(计划去Oracle化)。而且由于Oracle对复杂计算、统计分析的强大支持,在互联网数据分析、数据挖掘方面的应用也越来越多。

MySQL基本是生于互联网,长于互联网。其应用实例也大都集中于互联网方向,MySQL的高并发存取能力并不比大型数据库差,同时价格便宜,安装使用简便快捷,深受广大互联网公司的喜爱。并且由于MySQL的开源特性,针对一些对数据库有特别要求的应用,可以通过修改代码来实现定向优化,例如SNS、LBS等互联网业务。

MS SQL Server。windows生态系统的产品,好处坏处都很分明。好处就是,高度集成化,微软也提供了整套的软件方案,基本上一套win系统装下来就齐活了。因此,不那么缺钱,但很缺IT人才的中小企业,会偏爱 MS SQL Server 。例如,自建ERP系统、商业智能、垂直领域零售商、餐饮、事业单位等等。

1996年,Bill Gates亲自出手,从Borland挖来了大牛Anders,搞定了C#语言。微软02年搞定了http://ASP.NET。成熟的.NET、Silverlight技术,为 MS SQL Server赢得了部分互联网市场,其中就有曾经的全球最大社交网站MySpace,其发展历程很有代表性,可作为一个比较特别的例子。其巅峰时有超过1.5亿的注册用户及每月400亿的访问量。应该算是MS SQL Server支撑的最大的数据应用了。

架构。其实要说执行的区别,主要还是架构的区别。正是架构导致了相同SQL在执行过程中的解释、优化、效率的差异。

Oracle 数据文件包括:控制文件、数据文件、重做日志文件、参数文件、归档文件、密码文件。这是根据文件功能行进行划分,并且所有文件都是二进制编码后的文件,对数据库算法效率有极大的提高。由于Oracle文件管理的统一性,就可以对SQL执行过程中的解析和优化,指定统一的标准。

MySQL最大的一个特色,就是自由选择存储引擎。每个表都是一个文件,都可以选择合适的存储引擎。常见的引擎有 InnoDB、 MyISAM、 NDBCluster等。但由于这种开放插件式的存储引擎,比如要求数据库与引擎之间的松耦合关系。从而导致文件的一致性大大降低。在SQL执行优化方面,也就有着一些不可避免的瓶颈。在多表关联、子查询优化、统计函数等方面是软肋,而且只支持极简单的HINT。

SQL Server 数据架构基本是纵向划分,分为:Protocol Layer(协议层), Relational Engine(关系引擎), Storage Engine(存储引擎), SQLOS。SQL执行过程就是逐层解析的过程,其中Relational Engine中的优化器,是基于成本的(CBO),其工作过程跟Oracle是非常相似的。

标签: SQL Server Oracle MySQL

预约领优惠